Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
iScience ; 25(10): 105074, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2007781

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide outbreak, known as coronavirus disease 2019 (COVID-19). Alongside vaccines, antiviral therapeutics is an important part of the healthcare response to COVID-19. We previously reported that TEMPOL, a small molecule stable nitroxide, inactivated the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by causing the oxidative degradation of its iron-sulfur cofactors. Here, we demonstrate that TEMPOL is effective in vivo in inhibiting viral replication in the Syrian hamster model. The inhibitory effect of TEMPOL on SARS-CoV-2 replication was observed in animals when the drug was administered 2 h before infection in a high-risk exposure model. These data support the potential application of TEMPOL as a highly efficacious antiviral against SARS-CoV-2 infection in humans.

2.
Science ; 373(6551): 236-241, 2021 07 09.
Article in English | MEDLINE | ID: covidwho-1266364

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes. We found that the catalytic subunit of the RdRp, nsp12, ligates two iron-sulfur metal cofactors in sites that were modeled as zinc centers in the available cryo-electron microscopy structures of the RdRp complex. These metal binding sites are essential for replication and for interaction with the viral helicase. Oxidation of the clusters by the stable nitroxide TEMPOL caused their disassembly, potently inhibited the RdRp, and blocked SARS-CoV-2 replication in cell culture. These iron-sulfur clusters thus serve as cofactors for the SARS-CoV-2 RdRp and are targets for therapy of COVID-19.


Subject(s)
Coenzymes/metabolism , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cyclic N-Oxides/pharmacology , Iron/metabolism , SARS-CoV-2/drug effects , Sulfur/metabolism , Amino Acid Motifs , Animals , Antiviral Agents/pharmacology , Binding Sites , Catalytic Domain , Chlorocebus aethiops , Coenzymes/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Enzyme Inhibitors/pharmacology , Iron/chemistry , Protein Domains , RNA Helicases/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Spin Labels , Sulfur/chemistry , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL